Nanoparticles of a different source induce different patterns of activation in key biochemical and cellular components of the host response.
نویسندگان
چکیده
Nanoparticulate materials are produced by industrial processing or engineered for specific biomedical applications. In both cases, their contact with the human body may lead to adverse reactions. Most of the published papers so far have focused on the cytotoxic effects of nanoparticles (NPs). Instead, the present in vitro study investigates the effect of different types of NP on key components of the host response such as clot formation and the inflammatory cells. The different NPs were pre-conditioned with platelet-rich human plasma for 30 min and then incubated with the blood mononuclear cells for 20 hours. The potential of the different NPs to induce clot formation, platelet activation and monocyte/macrophage differentiation was assessed by morphological analysis, immunocytochemistry and biochemical assays. The data showed that nanoparticulate materials based on antimony, silver and nickel were capable of promoting the polymerization of fibrin and the aggregation and fragmentation of platelets, leading to a moderately activated monocyte phenotype. This process was more pronounced in the case of antimony- and silver-based NPs that share a similar size and round-shaped morphology. Conversely, NPs of cobalt, titanium and iron appeared to stimulate cells to acquire a macrophage phenotype able to secrete higher levels of tumour necrosis factor alpha, a pro-inflammatory cytokine. Therefore, the present study provides clear indications about the subtle and adverse effects that the invasion of these materials may produce in the cardiovascular system and in vital organs.
منابع مشابه
Homocysteine Induces Heme Oxygenase-1 Expression via Transcription Factor Nrf2 Activation in HepG2 Cells
Background: Elevated level of plasma homocysteine has been related to various diseases. Patients with hyperhomocysteinemia can develop hepatic steatosis and fibrosis. We hypothesized that oxidative stress induced by homocysteine might play an important role in pathogenesis of liver injury. Also, the cellular response designed to combat oxidative stress is primarily controlled by the transcripti...
متن کاملThe role of surface charge of ISCOMATRIX nanoparticles on the type of immune response generated against Leishmaniasis in BALB/c mice
Objective(s): ISCOMATRIX vaccines have now been shown to induce strong antigen-specific cellular or humoral immune responses to a broad range of antigens of viral, bacterial, parasite or tumor. In the present study, we investigated the role of ISCOMATRIX charge in induction of a Th1 type of immune response and protection against Leishmania major infection in BALB/c mice. Materials and Methods:...
متن کاملArginase Activity and Its Effects on Pathogenesis of Leishmania
Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...
متن کاملResponse of Yield and Morphophysiological Characteristics of Corn (SC 704) to Different Source of Potash Fertilizer under Deficient Irrigation Situation (at South West of Iran)
BACKGROUND: Deficit irrigation strategies were effective in saving volume of water. Potassium is an essential nutrient that affects most of the biochemical and physiological processes are involved in plant resistance to biotic and a biotic stresses. OBJECTIVES: This study was conducted to assess effect of different pattern of irrigation and several source...
متن کاملAssessment the Effect of Concentration and Application Time of Titanium Dioxide Nanoparticles on Biochemical Traits and Seed Yield of Wheat (Triticum aestivum L.)
Nanoparticles of titanium increase cell growth by improvement of photosynthetic and nitrogen metabolism and therefore, caused an increasing in weight of the plant. This re-search was conducted to evaluate seed yield and biochemical traits of bread wheat affected by different levels of titanium dioxide Nanoparticles in Ahvaz region, Khuzestan province, located at southwestern Iran by factorial e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the Royal Society, Interface
دوره 6 41 شماره
صفحات -
تاریخ انتشار 2009